
Tiny but Mighty: Leveraging Pruning and Quantization in Audio

 Neural Networks for Compact Device Efficiency
By Maxim Clouser, mmc276@cornell.edu

1

Preprocessing: Audio Recording and Visualization

The “Yes” and “No” audio recordings are visualized in Figures 1-5 for the time domain,

frequency domain, Mel spectrogram, and MFCC spectrogram.

Figure 1- Time domain Figure 2- Frequency domain

Figure 2- Spectrogram
Figure 4- Mel Spectrogram

2

Audio must be preprocessed before being passed into a neural network to reduce noise, extract

features, and apply normalization. This process allows us to improve the accuracy and

generalization ability of a neural network by providing it with a rich view of the audio.

The audio is first converted from analog to digital format, where the analog format of the audio

is natural and continuous, and the digital format represents a sampling of the analog waves where

the amplitudes are also quantized, resulting in a smaller number of discrete values that represent

the audio wave which can be stored efficiently.

Before passing our digital audio to the neural network, we must extract features from the audio

that can be learned. Applying a Fast Fourier Transform (FFT) to the time domain provides us

with the frequency domain representation, which we can use to create a spectrogram. This

spectrogram is a picture that includes an additional dimension to time and frequency, which is

the amplitude (or energy) of a particular frequency at a particular time. This rich representation

provides a neural network, especially a CNN, with a detailed view of the signal's properties,

allowing it to recognize patterns corresponding to specific audio events.

In addition to the spectrogram, a Mel spectrogram uses the Mel scale to map frequencies that

better approximate human hearing sensitivity. A Mel filter is applied to the magnitude of the FFT

signal which partitions the frequencies into Mel-spaced bins which are then used to create a

spectrogram. This Mel scale is created in a way such that sounds of equal distance from each

other on this scale are also perceived as equal distance by humans. So, the difference between a

spectrogram and Mel spectrogram is that a spectrogram uses a linear frequency scale, and a Mel

spectrogram uses frequencies on the Mel scale. The Mel spectrogram is more effective for

speech recognition than a linear frequency spectrogram because it emphasizes those frequency

bands that are most important for human perception.

The MFCC spectrogram is different in that the energies are logged when being passed through

the Mel filter because humans perceive sound intensity logarithmically. These values then

undergo a cosine transformation which decorrelates the filter banks. The result of this process is

Figure 5- MFCC Spectrogram

3

a more compact set of features that mimic the human perception more closely than the linear-

frequency and Mel spectrograms. Additionally, timbral characteristics are introduced which

would not otherwise be captured.

Model Size Estimation

The estimated flash usage of the TinyConv model is calculated by multiplying its total number of

parameters by their size, resulting in an estimated flash usage of 0.07 MB (about 17k FP32

parameters). Therefore, the TinyConv model will only use 7% of the MCU’s flash which is 1

MB.

The estimated RAM usage of the TinyConv model is calculated by capturing the input and

output sizes of tensors for each layer which are multiplied by the number of bytes used per

floating point value. This results in an estimated RAM usage of 117 KB which is 45.7% of the

total available RAM on the MCU (256 KB).

The TinyConv model has roughly 17k parameters and 670k FLOPs during a forward pass. This

was calculated using forward hooks and counting the number of FLOPs performed for each

module type by multiplying the dimensions of tensors by the number of operations being

performed on each element. For example, the number of FLOPs for the linear layer is calculated

by multiplying the number of weights by two (one add operation and one multiply operation) and

adding the number of biases (one add operation). The fully connected later accounted for 32k

FLOPs and the conv2d layer accounted for 640k FLOPs.

Comparing the number of FLOPs of TinyConv to other models: This CRNN-based keyword

spotting model has roughly 229k parameters and 30 MFLOPs during inference [1]. Furthermore,

this paper introduces TC-ResNet, a CNN optimized for key word spotting on mobile devices,

which has FLOPs that range between 3 – 13.4M depending on the layer size [2]. The paper

compares the TC-ResNet to nine other models (which do not perform as well) using number of

FLOPs and parameters, where the listed models have FLOPs that range anywhere from 1.5 –

1950M. The 2D-ResNet8 is a variant of TC-ResNet8 which utilizes 2D convolutions and has

35.8M FLOPs and 66k parameters [2]. The TinyConv model has significantly less FLOPs than

the optimized TC-ResNet and the other models listed.

Using the CPU and T4 GPU on Google Colab, the inference runtime of the TinyConv model

(batch size = 1) is 2.010ms for CPU and 34.000us on GPU. Note that running inference on the

CPU is 59x slower than doing so on GPU.

4

Training and Analysis

An accuracy of 94% was achieved after training the TinyConv. Figure 6 plots the curves of the

training loss and validation accuracy during training.

The speech commands dataset created by Google is a collection of one second audio files

designed for use in speech recognition tasks. This dataset includes 35 classes of keywords and a

collection of files for background noise. Version .02 includes 105,829 audio files and the number

of samples for train/validation/test is 84,848 / 9,982 / 4,890 respectively [3].

The TinyConv model was trained using the following four classes: Silence, Unknown, Yes, No.

The training of this model used 10,556 samples for the train set, 1,333 for the validation set, and

1,368 for the test set.

Figure 6- Training loss and validation accuracy when training the TinyConv model to achieve
94% accuracy with 50 epochs and a learning rate of 1e-3.

5

Model Conversion and Deployment

Profiling

The total running time of the TinyConv model on the Arduino MCU is 109ms, which is 55x

slower than the CPU runtime (2ms) and 3,205x slower than GPU runtime (34us). The breakdown

of the preprocessing, neural network, and post-processing runtimes on the Arduino MCU is

plotted in Figure 7.

More than 50% of the running time is spent in the neural network stage, and roughly 0% of the

time is spent during the postprocessing stage.

Accuracy

While testing the TinyConv model with my own voice, a high accuracy (95%) is achieved if I

only say the words “yes” or “no”. However, when I test the model with words that sound like

“yes” or “no”, such as “finesse” or “elbow” the model almost always incorrectly classifies the

words as “yes” or “no” (50% accuracy). Therefore, this model performs very well when

distinguishing between these two words (which sound very different from each other) but is not

able to distinguish similar sounding words.

Comparing these results with the training and validation accuracy, the results are about the same.

The training and validation accuracies were about 93% and I found that the model achieved 95%

accuracy in practice (where spoken words are distinguishable).

Figure 7- Preprocessing (21ms), neural network (88ms), and post-processing (<1ms) runtimes on the
Arduino Nano 33 BLE Sense MCU

6

Quantization-Aware Training

Symmetric and asymmetric quantization were implemented in this section to reduce the size of

the model while maintaining as much accuracy as possible. The accuracies of post-training

quantization and quantization-aware tuning are compared to understand the impact of reducing

the precision of parameters after training versus simulating the precision difference during the

training process.

In symmetric quantization, the quantized range is symmetrical around zero. Each value to be

quantized is divided by a scale, which is determined using the maximum value and the number

of bits. This value is then rounded and clamped to be within the range of bits specified to obtain

the final quantized value [4].

In asymmetric quantization, the range does not necessarily need to be symmetric around zero,

rather it can be tailored to the minimum and maximum values of the data. After each value is

divided by the scale, a zero point is added because the real zero value within this quantization

range might not be at the midpoint. The scale is calculated based on the range of the data and the

number of bits. Finally, the range is clamped between zero and the number of bits [4].

A straight through estimator (STE) is used for rounding and allows gradients to pass through

during the backward pass even though rounding is non-differentiable. A class is implemented for

symmetric and asymmetric quantization that applies quantization to a given tensor for a given

scale and zero-point. Additionally, a quantization configuration class is used to calculate the

scale and zero-point for each type of quantization.

To quantize a given layer, the weights, biases, and activations are each quantized according to the

configuration and inserted into a new module before being returned. During quantization-aware

tuning, the model is quantized at the beginning of the forward pass, it performs computation

using these quantized values, and then the values are converted back (dequantized). The goal of

this is to simulate the effects of quantization during training which results in a model that is more

robust to the reduced precision when deployed.

7

The impact of the two quantization techniques using various bit widths for precision is shown in

Figure 8. For each examined bit width, the QAT model consistently outperforms the post-training

quantization model in terms of accuracy. The largest gap in accuracy between these models

exists at a bit width of 2. As the bit width increases, this gap shrinks.

This divergence can be attributed to the differences in how each technique approaches

quantization. QAT integrates quantization directly into the training process, allowing the model

to adapt to the lower precision constraints. This approach enables the model to learn and adjust to

the information loss due to the lower precision, resulting in a higher accuracy. In contrast, post-

training quantization applies quantization after the model has been trained and does not provide

the model the opportunity to adapt to the reduction in precision. Consequently, this leads to a

more significant drop in performance, particularly at lower bit widths where precision loss is

greater.

Lower bit widths imply less precision and a higher likelihood of information loss. As bit width

increases, allowing for more precise representations, the gap in accuracy between the QAT and

post-training quantization shrinks. This suggests that while QAT is more robust to lower

precision levels, this advantage diminishes as precision increases.

Figure 8- The accuracies for quantize-aware training (QAT) and post-training quantization are compared for bit
widths [2, 4, 6, 8].

8

Pruning

In this section, structured and unstructured pruning are applied to the TinyConv model to observe

their effects on accuracy. Under both pruning techniques, weights are removed based on a

criterion such as the L1 Norm or L2 Norm. Unstructured pruning involves removing individual

weights based on their magnitudes resulting in sparse matrices. Structured pruning involves

removing entire units of the network, such as channels in a CNN module, based on an aggregate

measure which results in a change in the network architecture.

Norms

Criteria for deciding which weights to remove include L1 Norm, L2 Norm, and L-infinity Norm.

L1 Norm, also known as Manhattan distance, is the sum of the absolute values of all elements.

Using L1 Norm for pruning means to remove the weights with the smallest absolute value which

can be beneficial when many of the weights are close to zero and the goal is to enforce sparsity.

This technique is less sensitive to outliers compared to L2 Norm.

L2 Norm, also known as the Euclidean Norm, is the square root of the sum of the squares of all

elements. This is Norm is more sensitive to outliers compared to the L1 Norm, and using this

criterion means to remove weights that have less impact on the output, since larger weights

contribute more to the L2 Norm.

Finally, the L-infinity Norm is the maximum absolute value of all elements. This Norm is

focused on the largest outlier in terms of its absolute value and results in selecting the weight

which has the largest magnitude.

When choosing a Norm to use during pruning, L1 Norm is best for achieving sparse matrices, L2

Norm is more suitable if the goal is to minimize the impact on the output of the network, and L-

infinity is useful in scenarios where the largest weights are specifically target for some reason.

Therefore, for the purpose of pruning and achieving sparsity, L1 Norm is the best match and is

used for the following experiments.

Equation 1- L1 Norm

Equation 2- L2 Norm

Equation 3- L-infinity Norm

9

Structured Pruning

Structured pruning is the process of removing groups of weights in the network. Entire units of

the network are removed such as channels, resulting in reductions in computation during

inference since entire units of the network no longer need to be computed resulting in a

simplified network architecture. This pruning technique allows for optimizations at the hardware

or software level.

The TinyConv model was pruned across convolutional channels using structured pruning from

the PyTorch framework [5]. While pruning a model using Torch, the framework keeps track of

the original weights and uses a mask and forward hooks to simulate the pruning during the

forward pass. Using the “remove” method from the pruning library removes the mask and hooks

so all is left is pruned values (where channels that were pruned are set to zero). After pruning the

channels, the zeroed channels were removed from the model to reduce size. This simplification

of the model is achieved by choosing the nonzero channels from the convolutional layer,

calculating the new output size of a convolutional layer with only these nonzero channels, and

adjusting the input size of the following fully connected linear layer. The result of this process is

a new TinyConv model with a convolutional module that has a smaller number of channels, and

the rest of the old model is kept the same (besides the reshaping of the linear layer).

Figure 9- Accuracy vs number of parameters of a structured pruned model using 5
thresholds before and after finetuning with 10 epochs and a learning rate of 1e-4.

10

For various thresholds, two models were pruned and simplified, and only one was finetuned (10

epochs with a learning rate of 1e-4). As the threshold increases, more parameters are removed,

and removing more parameters reduces accuracy. Here we have a trade-off between size and

accuracy, which is displayed in Figure 9 and 10 where accuracy plotted against the number of

parameters and flops. Note the similarity in the trend between accuracy vs. flops and accuracy

vs. number of parameters. The finetuned model handles the reduction in parameters well, as a

small amount of accuracy is sacrificed as the threshold increases and parameters are reduced.

The model that was not finetuned has a significant reduction in accuracy starting when 35% -

40% of its channels are pruned. With most of its parameters removed, the pruned and simplified

model without fine tuning struggles to accurately predict keywords.

Increasing the threshold reduces the number of parameters, which causes a reduction in accuracy

by a factor that depends on whether the model was provided additional training time after being

pruned to adapt to the loss in parameters. Although reducing the number of parameters reduces

accuracy, doing so also reduces runtime which can be crucial depending on the use case of the

model. Critical machine learning applications need to return outputs as fast as possible with

limited memory, in which case a reduction in accuracy may be worth the faster runtime. Figures

11 and 12 show the effect of structured pruning on runtime for CPU and the Arduino Nano 33

BLE Sense MCU.

Figure 10- Accuracy vs FLOPs of structured pruned models using 5 thresholds before and
after finetuning with 10 epochs and a learning rate of 1e-4.

11

As the threshold is increased, both models perform inference faster. Increasing the threshold

increases the number of parameters that are pruned (and removed) which consequently reduces

the computation required during a forward pass. The finetuned model performs inference just as

fast as the model that was not fine-tuned (as they have the same number of parameters), yet it

achieves a much higher accuracy at greater thresholds. Consider the case where 70% of the

parameters are pruned. The fine-tuned model achieves an accuracy of about 85% and the model

that was not fine-tuned achieves less than 30% accuracy.

Observe the “cliff” that occurs in Figures 9-12 at a threshold of 35% - 40% where the accuracy

of the model that was not fine-tuned decreases dramatically. At this point, the CPU and MCU

runtime is 2.7ms and 98ms respectively, and the model has 10k parameters with 400k flops. This

is the limit of the TinyConv model without finetuning, where removing any more parameters

results in significant reduction in accuracy. Therefore, if one were to use this model in practice

and the ability to fine-tune is constrained, no more than 35% of the model should be pruned to

maintain 90% of the accuracy that was achieved during training. In contrast, if fine-tuning is

feasible, up to 65% of the TinyConv model can be pruned while still maintaining strong

accuracy.

Figure 11- Accuracy vs runtime on the Google Colab CPU for structured pruned models
using 5 thresholds before and after finetuning with 10 epochs and a learning rate of 1e-4.

12

Unstructured Pruning

Unstructured pruning is the process of removing individual weights from the network. This can

operate on the local level (within a single layer) or at the global level where individual weights

are removed across all layers. The resulting network after unstructured pruning has the same

architecture but with many weights set to zero, which creates a sparse matrix and reduces the

model size for storage. This technique can be beneficial for hardware and software that is

optimized for handling sparse matrix operations.

Pruning the TinyConv model using unstructured pruning was done using the L1 unstructured

module from the PyTorch pruning library [6]. This process removes the values with the lowest

L1 Norm from a given module. In this experiment, the L1 unstructured module was used to

prune the convolutional and linear layers. Two TinyConv models are created and pruned using

this module, and the “remove” method is not applied to the model that is to be fine-tuned. This

effectively “freezes” the pruned weights to zero which prevents them from being updated during

the fine-tuning process. Recall that the prune library in PyTorch achieves this by storing a mask

and the original weights of the model which are applied during the forward pass using forward

hooks stored in the buffer [6]. Removing these using the “remove” method would consequently

remove this capability by removing the hooks and mask and leaving the original weights with the

mask applied, effectively “unfreezing” the pruned (zeroed) weights.

Figure 12- Accuracy vs runtime on the Arduino Nano 33 BLE Sense MCU for structured
pruned models using 5 thresholds before and after finetuning with 10 epochs and a

learning rate of 1e-4.

13

Although the zeroed parameters are not entirely removed from the model as in structured

pruning, unstructured pruning leads to a speed up in computation due to the introduction of

sparsity. When the weights are pruned, they are set to zero which creates a sparse matrix. These

sparce matrices require less computation since operations involving zero often do not need to be

computed. To realize these computational benefits, specialized hardware and software is required

which are designed to efficiently handle spare matrices by skipping over the zeros and focusing

on non-zero elements. Similarly, sparse representations can reduce the amount of memory

required to store the weights (since zeros do not need to be stored) and decrease memory

bandwidth. In terms of software, there are libraries and frameworks that support sparse tensor

operations to speedup computation such as PyTorch.

The trade-off between accuracy and size can be seen in Figure 13 where the accuracy is plotted

against the number of the parameters for two unstructured pruned TinyConv models. One of

these models was fine-tuned for 10 epochs with a learning rate of 1e-4, and one was not fine-

tuned.

Like the results observed from structured pruning, increasing the threshold results in a decrease

in accuracy. The model that was not fine-tuned has a significant decrease in accuracy at a

threshold of 35% - 40%. This “cliff” phenomenon is consistent with what is seen in structured

Figure 13- Accuracy vs number of parameters for pruned TinyConv models using
unstructured pruning. One model was fine-tuned for 10 epochs with a learning rate of 1e-4

and the other was not fine-tuned. Five thresholds were used to prune each model

14

pruning. It corresponds with the understanding that reducing the number of parameters to a

certain extent leads to significant drops in accuracy, making further pruning counterproductive.

The fine-tuned model performs significantly better than the model that was not fine-tuned after

pruning as threshold increases. Fine-tuning the models post-pruning mitigates the impact of this

accuracy drop. Models that undergo fine-tuning after pruning display a more graceful

degradation in accuracy as the pruning threshold increases. This is because fine-tuning allows the

network to readjust its remaining parameters, compensating for the loss of the pruned ones. The

network essentially relearns to make accurate predictions with its reduced parameters, leveraging

the remaining parameters more effectively.

Conclusion

This study on preprocessing audio for neural networks, size estimation, training, model

conversion, quantization, and pruning techniques demonstrates the intricate balance between

model performance, accuracy, and computational efficiency. The preprocessing stages, including

the conversion from analog to digital and feature extraction through various spectrogram

techniques, significantly enhance neural network performance for audio recognition tasks.

Moreover, the impact of quantization and pruning on model efficiency is substantial.

Quantization-aware training (QAT) and both structured and unstructured pruning methods show

that model accuracy can be maintained to a considerable degree, even with substantial reductions

in computational resources. These techniques explored through the TinyConv model allow for

the deployment of more efficient, yet still powerful, models in resource-limited settings. The

TinyConv model, with its minimal flash and RAM usage, showcases efficient use of resources

while retaining high accuracy, making it ideal for constrained environments like

microcontrollers.

15

References

1. Arık, Sercan Ö., et al. "Convolutional Recurrent Neural Networks for Small-Footprint

Keyword Spotting." arXiv preprint arXiv:1703.05390, 2017

2. Choi, Seungwoo, et al. "Temporal Convolution for Real-Time Keyword Spotting on

Mobile Devices." arXiv preprint arXiv:1904.03814v2, 2019

3. Hugging Face. (n.d.). Speech Commands dataset. Hugging Face Datasets. Retrieved from

https://huggingface.co/datasets/speech_commands

4. Intel Labs. (n.d.). Quantization Algorithms. Distiller. Retrieved from

https://intellabs.github.io/distiller/algo_quantization.html

5. "torch.nn.utils.prune.LnStructured — PyTorch 1.10 Documentation." PyTorch, PyTorch,

https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.LnStructured.html#torch.nn

.utils.prune.LnStructured.prune

6. "torch.nn.utils.prune.l1_unstructured — PyTorch 1.10 Documentation." PyTorch,

PyTorch,https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.l1_unstructured.ht

ml#torch.nn.utils.prune.l1_unstructured

https://huggingface.co/datasets/speech_commands
https://intellabs.github.io/distiller/algo_quantization.html

