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Preprocessing: Audio Recording and Visualization 

The “Yes” and “No” audio recordings are visualized in Figures 1-5 for the time domain, 

frequency domain, Mel spectrogram, and MFCC spectrogram. 

 

 

 

 

 

 

Figure 1- Time domain Figure 2- Frequency domain 

Figure 2- Spectrogram 
Figure 4- Mel Spectrogram 



2 
 

 

 

 

 

 

 

 

 

 

 

Audio must be preprocessed before being passed into a neural network to reduce noise, extract 

features, and apply normalization. This process allows us to improve the accuracy and 

generalization ability of a neural network by providing it with a rich view of the audio. 

The audio is first converted from analog to digital format, where the analog format of the audio 

is natural and continuous, and the digital format represents a sampling of the analog waves where 

the amplitudes are also quantized, resulting in a smaller number of discrete values that represent 

the audio wave which can be stored efficiently.  

Before passing our digital audio to the neural network, we must extract features from the audio 

that can be learned. Applying a Fast Fourier Transform (FFT) to the time domain provides us 

with the frequency domain representation, which we can use to create a spectrogram. This 

spectrogram is a picture that includes an additional dimension to time and frequency,  which is 

the amplitude (or energy) of a particular frequency at a particular time. This rich representation 

provides a neural network, especially a CNN, with a detailed view of the signal's properties, 

allowing it to recognize patterns corresponding to specific audio events. 

In addition to the spectrogram, a Mel spectrogram uses the Mel scale to map frequencies that 

better approximate human hearing sensitivity. A Mel filter is applied to the magnitude of the FFT 

signal which partitions the frequencies into Mel-spaced bins which are then used to create a 

spectrogram. This Mel scale is created in a way such that sounds of equal distance from each 

other on this scale are also perceived as equal distance by humans. So, the difference between a 

spectrogram and Mel spectrogram is that a spectrogram uses a linear frequency scale, and a Mel 

spectrogram uses frequencies on the Mel scale. The Mel spectrogram is more effective for 

speech recognition than a linear frequency spectrogram because it emphasizes those frequency 

bands that are most important for human perception. 

The MFCC spectrogram is different in that the energies are logged when being passed through 

the Mel filter because humans perceive sound intensity logarithmically. These values then 

undergo a cosine transformation which decorrelates the filter banks. The result of this process is 

Figure 5- MFCC Spectrogram 
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a more compact set of features that mimic the human perception more closely than the linear-

frequency and Mel spectrograms. Additionally, timbral characteristics are introduced which 

would not otherwise be captured. 

 

Model Size Estimation 

The estimated flash usage of the TinyConv model is calculated by multiplying its total number of 

parameters by their size, resulting in an estimated flash usage of 0.07 MB (about 17k FP32 

parameters). Therefore, the TinyConv model will only use 7% of the MCU’s flash which is 1 

MB. 

The estimated RAM usage of the TinyConv model is calculated by capturing the input and 

output sizes of tensors for each layer which are multiplied by the number of bytes used per 

floating point value. This results in an estimated RAM usage of 117 KB which is 45.7% of the 

total available RAM on the MCU (256 KB). 

The TinyConv model has roughly 17k parameters and 670k FLOPs during a forward pass. This 

was calculated using forward hooks and counting the number of FLOPs performed for each 

module type by multiplying the dimensions of tensors by the number of operations being 

performed on each element. For example, the number of FLOPs for the linear layer is calculated 

by multiplying the number of weights by two (one add operation and one multiply operation) and 

adding the number of biases (one add operation). The fully connected later accounted for 32k 

FLOPs and the conv2d layer accounted for 640k FLOPs.  

Comparing the number of FLOPs of TinyConv to other models:  This CRNN-based keyword 

spotting model has roughly 229k parameters and 30 MFLOPs during inference [1]. Furthermore, 

this paper introduces TC-ResNet, a CNN optimized for key word spotting on mobile devices, 

which has FLOPs that range between 3 – 13.4M depending on the layer size [2]. The paper 

compares the TC-ResNet to nine other models (which do not perform as well) using number of 

FLOPs and parameters, where the listed models have FLOPs that range anywhere from 1.5 – 

1950M. The 2D-ResNet8 is a variant of TC-ResNet8 which utilizes 2D convolutions and has 

35.8M FLOPs and 66k parameters [2]. The TinyConv model has significantly less FLOPs than 

the optimized TC-ResNet and the other models listed. 

Using the CPU and T4 GPU on Google Colab, the inference runtime of the TinyConv model 

(batch size = 1) is 2.010ms for CPU and 34.000us on GPU. Note that running inference on the 

CPU is 59x slower than doing so on GPU. 
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Training and Analysis 

An accuracy of 94% was achieved after training the TinyConv. Figure 6 plots the curves of the 

training loss and validation accuracy during training. 

 

 

 

 

 

 

 

 

 

 

 

 

The speech commands dataset created by Google is a collection of one second audio files 

designed for use in speech recognition tasks. This dataset includes 35 classes of keywords and a 

collection of files for background noise. Version .02 includes 105,829 audio files and the number 

of samples for train/validation/test is 84,848 / 9,982 / 4,890 respectively [3]. 

The TinyConv model was trained using the following four classes: Silence, Unknown, Yes, No. 

The training of this model used 10,556 samples for the train set, 1,333 for the validation set, and 

1,368 for the test set. 

 

 

 

 

 

 

 

 

Figure 6- Training loss and validation accuracy when training the TinyConv model to achieve 
94% accuracy with 50 epochs and a learning rate of 1e-3. 
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Model Conversion and Deployment 

Profiling 

The total running time of the TinyConv model on the Arduino MCU is 109ms, which is 55x 

slower than the CPU runtime (2ms) and 3,205x slower than GPU runtime (34us). The breakdown 

of the preprocessing, neural network, and post-processing runtimes on the Arduino MCU is 

plotted in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More than 50% of the running time is spent in the neural network stage, and roughly 0% of the 

time is spent during the postprocessing stage. 

Accuracy 

While testing the TinyConv model with my own voice, a high accuracy (95%) is achieved if I 

only say the words “yes” or “no”. However, when I test the model with words that sound like 

“yes” or “no”, such as “finesse” or “elbow” the model almost always incorrectly classifies the 

words as “yes” or “no” (50% accuracy). Therefore, this model performs very well when 

distinguishing between these two words (which sound very different from each other) but is not 

able to distinguish similar sounding words. 

Comparing these results with the training and validation accuracy, the results are about the same. 

The training and validation accuracies were about 93% and I found that the model achieved 95% 

accuracy in practice (where spoken words are distinguishable). 

Figure 7- Preprocessing (21ms), neural network (88ms), and post-processing (<1ms) runtimes on the 
Arduino Nano 33 BLE Sense MCU 
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Quantization-Aware Training 

Symmetric and asymmetric quantization were implemented in this section to reduce the size of 

the model while maintaining as much accuracy as possible. The accuracies of post-training 

quantization and quantization-aware tuning are compared to understand the impact of reducing 

the precision of parameters after training versus simulating the precision difference during the 

training process. 

In symmetric quantization, the quantized range is symmetrical around zero. Each value to be 

quantized is divided by a scale, which is determined using the maximum value and the number 

of bits. This value is then rounded and clamped to be within the range of bits specified to obtain 

the final quantized value [4]. 

In asymmetric quantization, the range does not necessarily need to be symmetric around zero, 

rather it can be tailored to the minimum and maximum values of the data. After each value is 

divided by the scale, a zero point is added because the real zero value within this quantization 

range might not be at the midpoint. The scale is calculated based on the range of the data and the 

number of bits. Finally, the range is clamped between zero and the number of bits [4]. 

A straight through estimator (STE) is used for rounding and allows gradients to pass through 

during the backward pass even though rounding is non-differentiable. A class is implemented for 

symmetric and asymmetric quantization that applies quantization to a given tensor for a given 

scale and zero-point. Additionally, a quantization configuration class is used to calculate the 

scale and zero-point for each type of quantization. 

To quantize a given layer, the weights, biases, and activations are each quantized according to the 

configuration and inserted into a new module before being returned. During quantization-aware 

tuning, the model is quantized at the beginning of the forward pass, it performs computation 

using these quantized values, and then the values are converted back (dequantized). The goal of 

this is to simulate the effects of quantization during training which results in a model that is more 

robust to the reduced precision when deployed. 
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The impact of the two quantization techniques using various bit widths for precision is shown in 

Figure 8. For each examined bit width, the QAT model consistently outperforms the post-training 

quantization model in terms of accuracy. The largest gap in accuracy between these models 

exists at a bit width of 2. As the bit width increases, this gap shrinks. 

This divergence can be attributed to the differences in how each technique approaches 

quantization. QAT integrates quantization directly into the training process, allowing the model 

to adapt to the lower precision constraints. This approach enables the model to learn and adjust to 

the information loss due to the lower precision, resulting in a higher accuracy. In contrast, post-

training quantization applies quantization after the model has been trained and does not provide 

the model the opportunity to adapt to the reduction in precision. Consequently, this leads to a 

more significant drop in performance, particularly at lower bit widths where precision loss is 

greater. 

Lower bit widths imply less precision and a higher likelihood of information loss. As bit width 

increases, allowing for more precise representations, the gap in accuracy between the QAT and 

post-training quantization shrinks. This suggests that while QAT is more robust to lower 

precision levels, this advantage diminishes as precision increases. 

 

 

 

Figure 8- The accuracies for quantize-aware training (QAT) and post-training quantization are compared for bit 
widths [2, 4, 6, 8]. 
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Pruning 

In this section, structured and unstructured pruning are applied to the TinyConv model to observe 

their effects on accuracy. Under both pruning techniques, weights are removed based on a 

criterion such as the L1 Norm or L2 Norm. Unstructured pruning involves removing individual 

weights based on their magnitudes resulting in sparse matrices. Structured pruning involves 

removing entire units of the network, such as channels in a CNN module, based on an aggregate 

measure which results in a change in the network architecture. 

Norms 

Criteria for deciding which weights to remove include L1 Norm, L2 Norm, and L-infinity Norm. 

L1 Norm, also known as Manhattan distance, is the sum of the absolute values of all elements. 

Using L1 Norm for pruning means to remove the weights with the smallest absolute value which 

can be beneficial when many of the weights are close to zero and the goal is to enforce sparsity. 

This technique is less sensitive to outliers compared to L2 Norm. 

 

 

 

L2 Norm, also known as the Euclidean Norm, is the square root of the sum of the squares of all 

elements. This is Norm is more sensitive to outliers compared to the L1 Norm, and using this 

criterion means to remove weights that have less impact on the output, since larger weights 

contribute more to the L2 Norm. 

 

 

 

 

Finally, the L-infinity Norm is the maximum absolute value of all elements. This Norm is 

focused on the largest outlier in terms of its absolute value and results in selecting the weight 

which has the largest magnitude. 

 

 

When choosing a Norm to use during pruning, L1 Norm is best for achieving sparse matrices, L2 

Norm is more suitable if the goal is to minimize the impact on the output of the network, and L-

infinity is useful in scenarios where the largest weights are specifically target for some reason. 

Therefore, for the purpose of pruning and achieving sparsity, L1 Norm is the best match and is 

used for the following experiments. 

Equation 1- L1 Norm 

Equation 2- L2 Norm 

Equation 3- L-infinity Norm 
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Structured Pruning 

Structured pruning is the process of removing groups of weights in the network. Entire units of 

the network are removed such as channels, resulting in reductions in computation during 

inference since entire units of the network no longer need to be computed resulting in a 

simplified network architecture. This pruning technique allows for optimizations at the hardware 

or software level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The TinyConv model was pruned across convolutional channels using structured pruning from 

the PyTorch framework [5]. While pruning a model using Torch, the framework keeps track of 

the original weights and uses a mask and forward hooks to simulate the pruning during the 

forward pass. Using the “remove” method from the pruning library removes the mask and hooks 

so all is left is pruned values (where channels that were pruned are set to zero). After pruning the 

channels, the zeroed channels were removed from the model to reduce size. This simplification 

of the model is achieved by choosing the nonzero channels from the convolutional layer, 

calculating the new output size of a convolutional layer with only these nonzero channels, and 

adjusting the input size of the following fully connected linear layer. The result of this process is 

a new TinyConv model with a convolutional module that has a smaller number of channels, and 

the rest of the old model is kept the same (besides the reshaping of the linear layer). 

Figure 9- Accuracy vs number of parameters of a structured pruned model using 5 
thresholds before and after finetuning with 10 epochs and a learning rate of 1e-4. 
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For various thresholds, two models were pruned and simplified, and only one was finetuned (10 

epochs with a learning rate of 1e-4).  As the threshold increases, more parameters are removed, 

and removing more parameters reduces accuracy. Here we have a trade-off between size and 

accuracy, which is displayed in Figure 9 and 10 where accuracy plotted against the number of 

parameters and flops. Note the similarity in the trend between accuracy vs. flops and accuracy 

vs. number of parameters. The finetuned model handles the reduction in parameters well, as a 

small amount of accuracy is sacrificed as the threshold increases and parameters are reduced. 

The model that was not finetuned has a significant reduction in accuracy starting when 35% - 

40% of its channels are pruned. With most of its parameters removed, the pruned and simplified 

model without fine tuning struggles to accurately predict keywords. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing the threshold reduces the number of parameters, which causes a reduction in accuracy 

by a factor that depends on whether the model was provided additional training time after being 

pruned to adapt to the loss in parameters. Although reducing the number of parameters reduces 

accuracy, doing so also reduces runtime which can be crucial depending on the use case of the 

model. Critical machine learning applications need to return outputs as fast as possible with 

limited memory, in which case a reduction in accuracy may be worth the faster runtime. Figures 

11 and 12 show the effect of structured pruning on runtime for CPU and the Arduino Nano 33 

BLE Sense MCU. 

Figure 10- Accuracy vs FLOPs of structured pruned models using 5 thresholds before and 
after finetuning with 10 epochs and a learning rate of 1e-4. 
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As the threshold is increased, both models perform inference faster. Increasing the threshold 

increases the number of parameters that are pruned (and removed) which consequently reduces 

the computation required during a forward pass. The finetuned model performs inference just as 

fast as the model that was not fine-tuned (as they have the same number of parameters), yet it 

achieves a much higher accuracy at greater thresholds. Consider the case where 70% of the 

parameters are pruned. The fine-tuned model achieves an accuracy of about 85% and the model 

that was not fine-tuned achieves less than 30% accuracy.  

Observe the “cliff” that occurs in Figures 9-12 at a threshold of 35% - 40% where the accuracy 

of the model that was not fine-tuned decreases dramatically. At this point, the CPU and MCU 

runtime is 2.7ms and 98ms respectively, and the model has 10k parameters with 400k flops. This 

is the limit of the TinyConv model without finetuning, where removing any more parameters 

results in significant reduction in accuracy. Therefore, if one were to use this model in practice 

and the ability to fine-tune is constrained, no more than 35% of the model should be pruned to 

maintain 90% of the accuracy that was achieved during training. In contrast, if fine-tuning is 

feasible, up to 65% of the TinyConv model can be pruned while still maintaining strong 

accuracy. 

 

 

Figure 11- Accuracy vs runtime on the Google Colab CPU for structured pruned models 
using 5 thresholds before and after finetuning with 10 epochs and a learning rate of 1e-4. 
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Unstructured Pruning 

Unstructured pruning is the process of removing individual weights from the network. This can 

operate on the local level (within a single layer) or at the global level where individual weights 

are removed across all layers. The resulting network after unstructured pruning has the same 

architecture but with many weights set to zero, which creates a sparse matrix and reduces the 

model size for storage. This technique can be beneficial for hardware and software that is 

optimized for handling sparse matrix operations. 

Pruning the TinyConv model using unstructured pruning was done using the L1 unstructured 

module from the PyTorch pruning library [6]. This process removes the values with the lowest 

L1 Norm from a given module. In this experiment, the L1 unstructured module was used to 

prune the convolutional and linear layers. Two TinyConv models are created and pruned using 

this module, and the “remove” method is not applied to the model that is to be fine-tuned. This 

effectively “freezes” the pruned weights to zero which prevents them from being updated during 

the fine-tuning process. Recall that the prune library in PyTorch achieves this by storing a mask 

and the original weights of the model which are applied during the forward pass using forward 

hooks stored in the buffer [6]. Removing these using the “remove” method would consequently 

remove this capability by removing the hooks and mask and leaving the original weights with the 

mask applied, effectively “unfreezing” the pruned (zeroed) weights. 

Figure 12- Accuracy vs runtime on the Arduino Nano 33 BLE Sense MCU for structured 
pruned models using 5 thresholds before and after finetuning with 10 epochs and a 

learning rate of 1e-4. 
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Although the zeroed parameters are not entirely removed from the model as in structured 

pruning, unstructured pruning leads to a speed up in computation due to the introduction of 

sparsity. When the weights are pruned, they are set to zero which creates a sparse matrix. These 

sparce matrices require less computation since operations involving zero often do not need to be 

computed. To realize these computational benefits, specialized hardware and software is required 

which are designed to efficiently handle spare matrices by skipping over the zeros and focusing 

on non-zero elements. Similarly, sparse representations can reduce the amount of memory 

required to store the weights (since zeros do not need to be stored) and decrease memory 

bandwidth. In terms of software, there are libraries and frameworks that support sparse tensor 

operations to speedup computation such as PyTorch. 

The trade-off between accuracy and size can be seen in Figure 13 where the accuracy is plotted 

against the number of the parameters for two unstructured pruned TinyConv models. One of 

these models was fine-tuned for 10 epochs with a learning rate of 1e-4, and one was not fine-

tuned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like the results observed from structured pruning, increasing the threshold results in a decrease 

in accuracy. The model that was not fine-tuned has a significant decrease in accuracy at a 

threshold of 35% - 40%. This “cliff” phenomenon is consistent with what is seen in structured 

Figure 13- Accuracy vs number of parameters for pruned TinyConv models using 
unstructured pruning. One model was fine-tuned for 10 epochs with a learning rate of 1e-4 

and the other was not fine-tuned. Five thresholds were used to prune each model 



14 
 

pruning. It corresponds with the understanding that reducing the number of parameters to a 

certain extent leads to significant drops in accuracy, making further pruning counterproductive. 

The fine-tuned model performs significantly better than the model that was not fine-tuned after 

pruning as threshold increases. Fine-tuning the models post-pruning mitigates the impact of this 

accuracy drop. Models that undergo fine-tuning after pruning display a more graceful 

degradation in accuracy as the pruning threshold increases. This is because fine-tuning allows the 

network to readjust its remaining parameters, compensating for the loss of the pruned ones. The 

network essentially relearns to make accurate predictions with its reduced parameters, leveraging 

the remaining parameters more effectively. 

 

Conclusion 

This study on preprocessing audio for neural networks, size estimation, training, model 

conversion, quantization, and pruning techniques demonstrates the intricate balance between 

model performance, accuracy, and computational efficiency. The preprocessing stages, including 

the conversion from analog to digital and feature extraction through various spectrogram 

techniques, significantly enhance neural network performance for audio recognition tasks. 

Moreover, the impact of quantization and pruning on model efficiency is substantial. 

Quantization-aware training (QAT) and both structured and unstructured pruning methods show 

that model accuracy can be maintained to a considerable degree, even with substantial reductions 

in computational resources. These techniques explored through the TinyConv model allow for 

the deployment of more efficient, yet still powerful, models in resource-limited settings. The 

TinyConv model, with its minimal flash and RAM usage, showcases efficient use of resources 

while retaining high accuracy, making it ideal for constrained environments like 

microcontrollers. 
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